

The validity of the generic principle in drug regulation

Yang Yu

1

Medicines Evaluation Board, Utrecht Maastricht University, Maastricht

B B

Concerns about generic drugs

ΤΑΜΑ

Clin Kidney J (2014) 7: 151–155

Equivalence of generic medicines in general and immunosuppressants in particular – a regulatory opinion on switching of ciclosporin, tacrolimus and mycophenolate mofetil

Generics and Biosimilars Initiative Journal (GaBI Journal). 2013;2(2):86-90. DOI: 10.5639/gabij.2013.0202.019

Published in: Volume 2 / Year 2013 / Issue 2
Category: Perspective
Page: 86-90
Author(s): 2 Yang Yu, PharmD, 3 Professor Hubert GM Leufkens, PharmD, PhD, Marc Maliepaard, PhD
Visits: 13237 total, 1 today

.

Aims

- To investigate issues that may have an impact on the interchangeability of a generic drug and its brandname drug from a regulatory and pharmacokinetic perspective;
- Also on the interchangeability of generic drugs;
- to provide **recommendations** for optimizing the **regulation** of generic drugs.

c B G B

Interchangeability of generic and the brand-name drug

1. Intra-subject variability

(Br J Clin Pharmacol 81, 667-78 (2016))

2. Impact of post-marketing variations (to be submitted)

1. The intrasubject variation of drug exposure

• Aims:

B

C B G

- to investigate reason for difference in total and peak drug exposure in individuals that is observed upon switching to generic drugs
- Clarify the role of intrasubject variability in pharmacokinetics in this effect.
- Design:
 - Retrospective reanalysis of existing studies;
 - Archived data from replicate design bioequivalence studies
 - Nine replicate design studies representing six drug classes, i.e. for alendronate, atorvastatin, cyclosporine, ebastine, exemestane, mycophenolate mofetil, and ropinirole.

B B

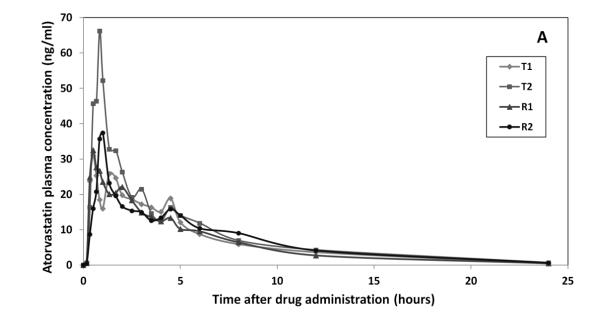
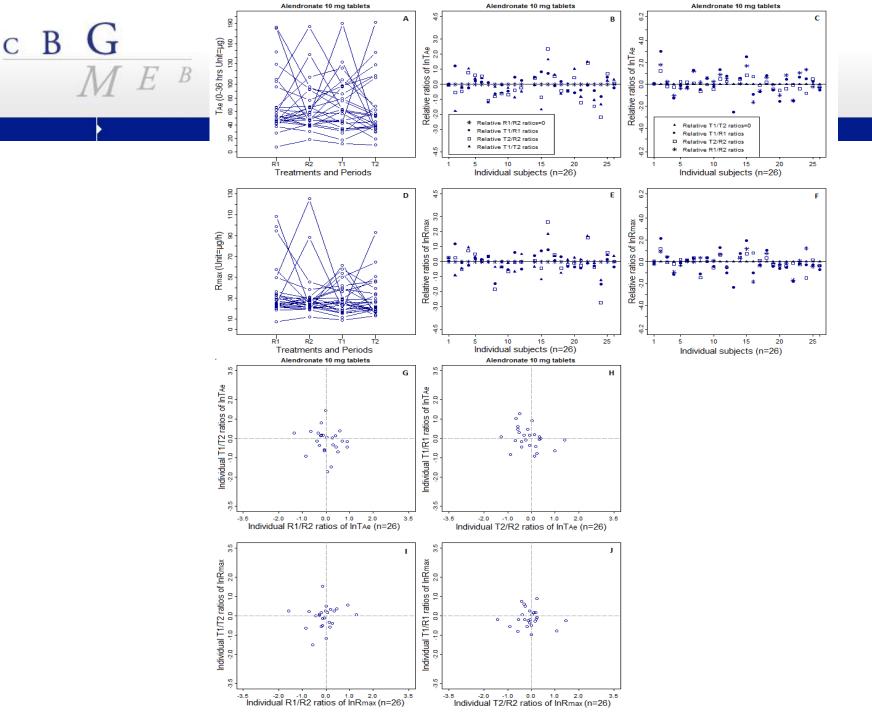



Figure 1 - 1. Individual illustrative atorvastatin plasma concentration-time curves for the brand-name and generic drugs in a single subject in the replicate design bioequivalence study (t=24 hours) in an arithmetic scale (A)

Results

Table 1 - 1. Estimations of intrasubject variances, variance due to subject-byformulation interaction, and the probability of exposure ratio beyond the borders of 80-125% range in individuals.

				AUC0-t (In-scale)		Cmax (In-scale)				
Active substances (Strength)	Ratios	N	Mean	Intrasubject variances	Variance of SbyF interaction (the upper boundary of 95% CI*)	Probability of ratio beyond 80-125% (%)	Mean	Intrasubject variances	Variance of SbyF interaction (the upper boundary of 95% CI*)	Probability of ratio beyond 80- 125% (%)	
Alendronate	R2-R1 T2-T1	25 26	0.023 -0.106	0.140 0.233	-0.069	67.3 74.4	-0.069 -0.014	0.155 0.181	-0.042	68.9 71.1	
(10 mg)	T-R	25	-0.039	0.118	(0.033)	72.8	-0.093	0.126	(0.057)	72.8	
Alendronate	R2-R1	68	-0.042	0.237	0.047	74.6	-0.135	0.291	0.021	77.0	
(70 mg)	T2-T1	67	0.006	0.223	(0.158)	73.9	0.010	0.269	(0.147)	76.1	
(10 115)	T-R	67	0.005	0.277	(0.200)	77.7	-0.039	0.301	(0.2)	79.1	
Atorvastatin	R2-R1	54	0.098 0.126	0.051	-0.015	48.7	-0.057	0.176	-0.091 (0.003)	70.7 78.4	
(40 mg)	T2-T1 T-R	58 54	-0.043	0.062	(0.007)	52.6 52.7	0.216 0.022	0.332 0.163		75.5	
	R2-R1	133	0.045	0.037		41.5	-0.019	0.170		70.2	
Cyclosporin	T2-T1	134	0.022	0.034	-0.006	39.3	0.034	0.161	-0.026	69.5	
(100 mg)	T-R	133	0.025	0.029	(0.003)	41.5	0.025	0.140	(0.019)	70.6	
Exemestane	R2-R1	54	-0.016	0.020	-0.008 (-	26.2	-0.025	0.093	-0.007	60.6	
(25 mg)	T2-T1	54	-0.001	0.020	0.000 (26.2	0.069	0.080	(0.032)	57.7	
	T-R	54	0.039	0.011	,	26.3	0.006	0.079	()	62.2	
Mycophenolat		37	0.001	0.011	-0.003	12.8	0.051	0.135	-0.029	66.8	
e mofetil	T2-T1 T-R	37 37	-0.032 -0.007	0.015 0.009	(0.003)	19.2 18.3	0.008 0.012	0.095 0.086	(0.026)	60.8 65.9	
(250 mg) Mycophenolat		41	-0.007	0.009		32.9	0.012	0.086		72.4	
e Mofetil (500	T2-T1	40	-0.041	0.020	0.002	9.3	-0.061	0.097	-0.038	61.3	
mg)	T-R	40	-0.012	0.020	(0.013)	32.1	-0.014	0.110	(0.030)	69.6	
	R2-R1	33	-0.006	0.014	0.000	18.5	0.042	0.022	0.000	29.3	
Ropinirole (2	T2-T1	29	0.007	0.016	0.000 (0.010)	21.9	0.138	0.080	0.009	57.7	
mg)	T-R	28	-0.067	0.016	(0.010)	29.3	0.144	0.060	(0.047)	57.8	

SbyF interaction, Subject-by-Formulation interation. * The upper boundary of 95% CI for the variance of SbyF interaction is used in the calculation of the probability of (T-R) ratio beyond the borders of 80-125% range.

Results

- Variation in individual total and peak exposure seen when a patient is **switched** from a brand-name drug to a generic drug **is comparable** to the variation seen following **repeated administration** of the brand-name drug.
- 2. Only the **intrasubject variability** seems to play a crucial and decisive role in the variation in drug exposure seen.
- 3. **No additional formulation dependent variation** in exposure is observed upon switching

CBG MEB

2. The cumulative impact of post-marketing quality variations

- Post-marketing changes of drugs
- Approved on an independent, case-by-case basis (unless multiple variations are submitted at once)
- Theoretically cumulative effect on the quality of a medicinal product
- The consequence : changes in the drug quality
 →the current drug may be different from the one that demonstrated bioequivalence with the brand-name drug.

Methods

- <u>Critical</u> post-marketing quality variations
- <u>Ten</u> active substances with a low solubility (BCS class II and IV)
- A risk assessment model → combines all critical variations applied to brand-name or generic drugs Risk (R) =Hazard (H) x Exposure (E)
- <u>Threshold</u> = 40.5 (based on cases with a known risk)
- Validation

Table 2 - 1. Definitions of relative risk scores for hazard.

Hazard component	Ca	Relative risk score (1= no risk)	
Log P	Ideal range: 1.56 - 3.34		2
	10%-90% percentile: -0.65 -	1.56; 3.34 - 5.36	3
	Outlier zone: < -0.65 or > 5.3	36	4
Therapeutic Index	Non-narrow therapeutic rang	је	2
	Narrow therapeutic range		4
Dosage form	Oral solutions		2
	Standard coating tablets or	2.5	
	Enteric-coated or delayed-re	3	
	Controlled or sustained-rele	3	
	Controlled or sustained-rele	3.25	
Dose	> 10 mg	1.5	
	≤ 10 mg	2.25	
Absorption dynamics	Absorption mechanisms	Passive diffusion	1.5
		Known active transport mechanism	1.875
		Known CYP 3A4 or P-gp interaction	1.875
	Delivery conditions	Non site-specific absorption	1.5
		Site-specific absorption	2.25

c b G M E B

Results

Table 2 - 2. Summary of selected medicinal products and risk assessment results.– Naproxen as an example

						Risk assessments results ^{\$}				
Active	Gener	Sele	ection of	Time	Number	Relative	Exposure	Total risk	Predict	
substanc	ic	proc	ducts [*] (n)	since	of	hazard	(mean (median,	(mean (median,	ed	
es (ATC-	medici	-		registrati	variations	(mean	the range))	the range))	positiv	
5)	nal			on**\$	\$	(median,			е	
	produ			(mean	(mean	the range))			cases [†]	
	cts (n)			(the	(the				(n)	
				range),	range))					
				years)						
Naproxe	23	16	Branded:	15.3;	1; 1	1.3; 1.3	4.2; 4.2	5.2; 5.2	0	
n			2	21.3						
(M01AE			Generics:	13.2 (6.2-	1.5 (1-4)	1.3 (1.3,	6.9 (3, 2-30.8)	8.8(4.2, 3-38.5)	0	
02)			14	25.8)		1.3-1.5)				

$\begin{array}{c} c & B & G \\ \hline M & E & B \end{array}$

 Table 2 - 3. Evaluation of risk assessment results for the brand-name and generic drugs.

	Life time	Selection of	Predicted	Predicted				
	(mean (the	variations	positive cases*	negative cases**				
	range), years)	(mean (the range))						
Brand-name drugs (n=16)	12.7 (2.6 - 21.9)	2.8 (1 - 6)	5 (31.3%)	11 (68.7%)				
Generic drugs (n=99)	8.4 (0.6 - 32.8)	2.2 (1 - 9)	15 (15.2%)	84 (84.8%)				
Total (n=115)		-	20 (17.4%)	95 (82.6%)				
Predicted positive cases* (n=20)	14.7 (3 - 32.8)	4.6 (2 - 9)	-	-				
Predicted negative cases** (n=95)	7.8 (0.6 - 25.8)	2 (1 - 6)	-	-				
* the drugs of total risks above threshold (threshold = 40.5); ** the drugs of total risks below threshold (threshold = 40.5).								

Results

- The totality of post-marketing variations would affect 17% of the drugs assessed (n= 20 out of 115)
 - \rightarrow 13% (15 out of 115) were generic drugs (n=99)
 - \rightarrow 4% (5 out of 115) were brand-name drugs (n=16)
- A limited number of generic drugs and brand-name drugs is affected.
- Overestimation of the model + low number of critical variations (n=2 in average)

Our concerns can neither be relieved nor strengthened.

Although **Regulatory action** may **not be necessary** at the moment, the effect of critical variations on generic drugs should be **re-assessed** in the future, using an improved risk assessment model.

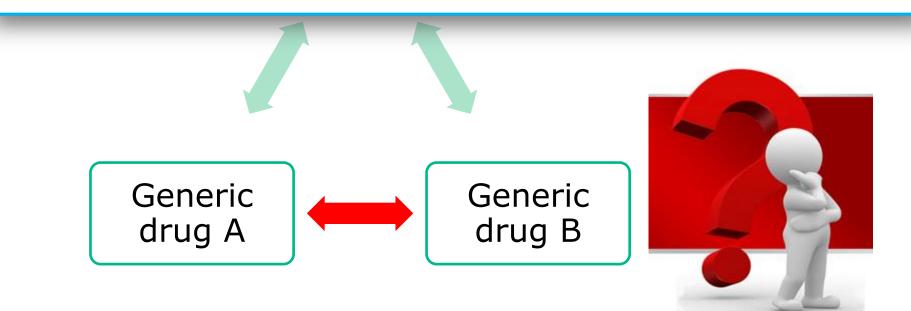
c B

Interchangeability of generic and generic drug

- 3. A comparative bioavailability study of gabapentin (*Clin Pharmacol Ther 94, 519-24 (2013)*)
- 4. Inter-study comparison for immunosuppressants and a broad selection of medicines *(Eur J Clin Pharmacol 71:979–990 (2015))*

Interchangeability of generic and generic drug

Eur J Clin Pharmacol. 2011 Oct;67(10):1007-16. Epub 2011 Apr 15.


B

C B

Interchangeability of generic anti-epileptic drugs: a quantitative analysis of topiramate and gabapentin.

Maliepaard M, Banishki N, Gispen-de Wied CC, Teerenstra S, Elferink AJ.

Medicines Evaluation Board, MEB-CBG, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands. m.maliepaard@cbg-meb.nl

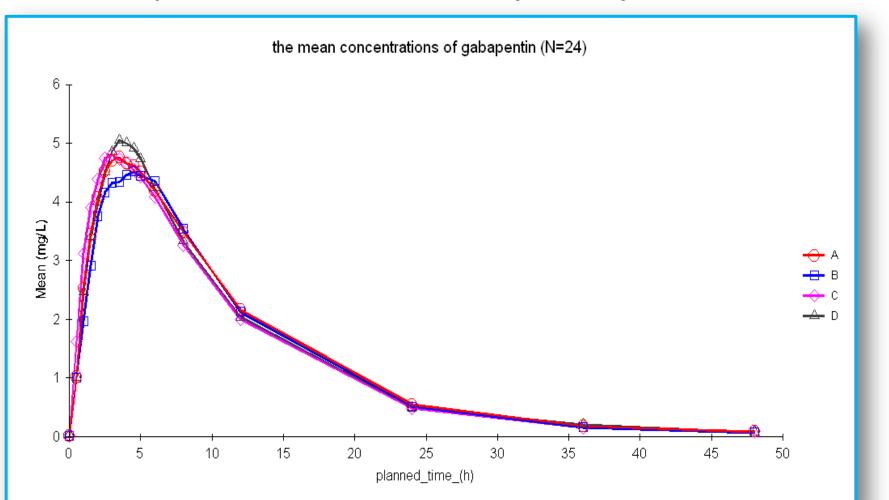
3. A comparative bioavailability study of gabapentin

A randomized, four-way crossover, comparative bio-availability study of branded (Neurontin®) and three generics 800 mg gabapentin tablets in healthy subjects under fasting conditions.

Protocol No.: CBG/Gaba2011/01

National Trial Register number: NTR2964

CRO Study No.: DRUM 11-GABA


• Objective

To investigate the possible 'drifting effect' upon genericgeneric exchange in vivo for gabapentin

Maastricht University Leading

Comparative Bio-availability Study

с в G

M F	В		
G1 vs Neurontin	C _{max}	AUC ₀₋₄₈	AUC _{inf}
Ratio	100.7%	96.9%	96.5%
90% CI	91.4%-110.5%	89.5%-104.9%	89.1%-104.4%
G2 vs			
Neurontin			
Ratio	105.1%	98.7%	98.7%
90% CI	93.5%-118.3%	87.6%-111.2%	88.0%-110.7%
G3 vs			
Neurontin			
Ratio	106.1%	98.7%	98.3%
90% CI	97.1%-115.8%	91.6%-106.4%	91.4%-105.8%
G1 vs G2			
Ratio	95.8%	98.1%	97.7%
90% CI	84.1%-109.0%	87.3%-110.4%	87.2%-109.5%
G1 vs G3			
Ratio	94.9%	98.1%	98.1%
90% CI	86.9%-103.6%	91.0%-105.9%	91.2%-105.4%
G2 vs G3			
Ratio	99.1%	100%	99.6%
90% CI	89.9%-109.2%	91.7%-109.1%	92.3%-109.2%

B

3. Comparative Bio-availability Study - results

- I→G: 90% CI in line with results of BE studies in registration files at the CBG-MEB
- G→G: 90% CI all within the 80-125% criterion for bioequivalence
- 90% CI comparable with the simulated 90% CIs for C_{max} and AUC_t. (Maliepaard, 2011) *validation of the method*

4. Inter-study comparison for immunosuppressants and a broad selection of medicines

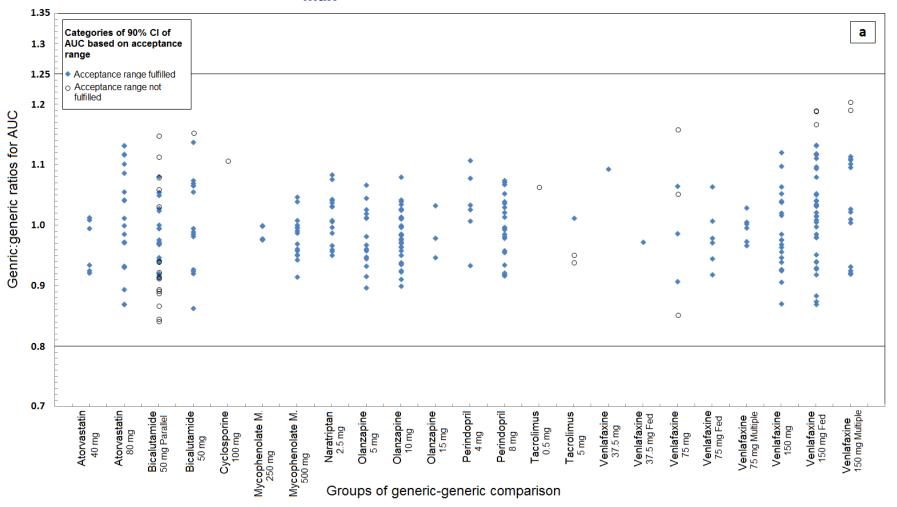
Dataset:

B

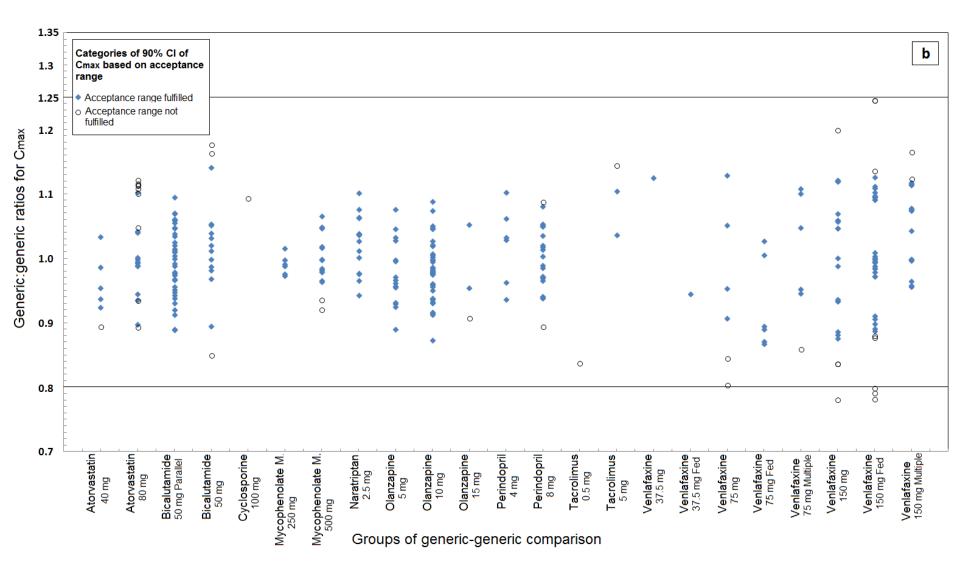
В

- 9 APIs, 115 brands of generic drugs were identified, which were registered based on <u>120 bioequivalence studies</u> in total.
- The generic:innovator ratios:
 - AUC: (90.0% 116.7%);
 - C_{max} : (87.7% 118.5%).

The mean absolute deviation of the ratios from 100% in this set of generics was 4.5% for AUC and 5.1% for C_{max}.


Table 4 - 1. A summary of selected generic drugs and bioequivalence studies(ranges of 90% CIs for AUC and C_{max}) in the study. – <u>Atorvastatin as an example</u>

APIs	Gen	Stren	Gene	Year	Stud	BE	D	Design		90%	CI for	90%	CI for					
(dosage	eric	gths	rics	of	у	studie				AL	JC	Cr	nax					
form)	bra	(mg)	(n=3	studi	stren	S				The	The	The	The					
	nds		54)	es	gth	(n=12				range	range	range	range					
	(n=1				(mg)	0)				of LL	of UL	of LL	of UL					
	15)									(%)	(%)	(%)	(%)					
Atorvast	18	10	18							90.0-	99.0-	89.0-	108.0-					
atin (IR)		20	18	2006	006 40	40 4	40	40	40	4	4	Cree	Sing					
		30	2	2006			Cros	le-	Fas	98.0	107.7	97.9	123.4					
		40	18	-			sove	dos	ting	94.5-	106.2	00 2	107.1-					
		60	1	2010 80	80 7	80 7		е			106.3-	88.3-						
		80	11							112.2	121.5	104.6	123.6					


Figure 4 -1. Ratios of generic-generic drug comparisons for (a) AUC and (b) C_{max} (n=292).

B

B

B C B E

c b G M E ^B

Study results

- The estimated generic:generic ratios (Fig. 4-1).
 - AUC: (84.2% 120.4%);
 - C_{max} : (78.1% 124.5%)

The mean absolute deviation of the ratios from 100% in this set of generic drugs was <u>5.4% for AUC and 6.1%.for C_{max}</u>

- The 90% CIs for both AUC_t and C_{max} within the bioequivalence criteria: <u>80.5%</u> (in 90.1% and 87.0% at least for AUC_t and C_{max}, respectively).
- Not meeting the bioequivalence criteria:
 - in 26 (out of 29 cases) for AUC_t and in 29 (out of 38 cases) for C_{max}, a wider range of 75-133% (or 80-125%) was not exceeded in the indirect comparison.

- Thus, although the results are not fully reassuring, we consider <u>a</u> pronounced risk upon generic-generic exchange in clinical practice as unlikely.
- Overall, <u>our study suggests that exposure-related risks associated</u> with the exchange of different generic drugs in clinical practice is limited, and not much increased -if any- to the situation in which a generic is exchanged with the innovator.

Discussions

- Individual bioequivalence vs. average bioequivalence
- The impact of regulatory activities (post-marketing quality variations and <u>guideline revision</u>)

Eur J Clin Pharmacol (2015) 71:1083–1089 DOI 10.1007/s00228-015-1889-9

PHARMACOKINETICS AND DISPOSITION

Influence of point estimates and study power of bioequivalence studies on establishing bioequivalence between generics by adjusted indirect comparisons

Luther Gwaza^{1,2} · John Gordon³ · Henrike Potthast⁴ · Jan Welink⁵ · Hubert Leufkens¹ · Matthias Stahl⁶ · Alfredo García-Arieta⁷

Conclusions

- Patients prescribed generic drugs should be able to trust that these drugs are as effective and safe as brand-name drugs or other generic drugs.
- While the interchangeability of generic and brand-name drugs has been extensively investigated, conclusions are far from unanimous.
- In general, confidence in generic drugs has increased considerably in recent years.
- Relatively little is known about the interchangeability of generic drugs.

Conclusion

- Current regulation for registration of a generic drug in Europe is reasonably strict to ensure the bioequivalence of the generic drug with the brand-name drug.
- However, there are still rooms to improve the regulations, for example to update the bioequivalence acceptance criterion of 80-125%.

PhD defense

Time: Friday 19 May 2017 (14:00)

Place: Maastricht University

Towards understanding interchangeability of generic drugs

Dissertation

To obtain the degree of Doctor at the Maastricht University,

on the authority of the Rector Magnificus,

Prof. dr. Rianne M. Letschert

in accordance with the decision of the Board of Deans,

to be defended in public

On Friday 19 May 2017, at 14:00 hours

by

Yang Yu

Acknowledgement

• Prof. Dr. David Burger (Radboud University Nijmegen Medical Centre)

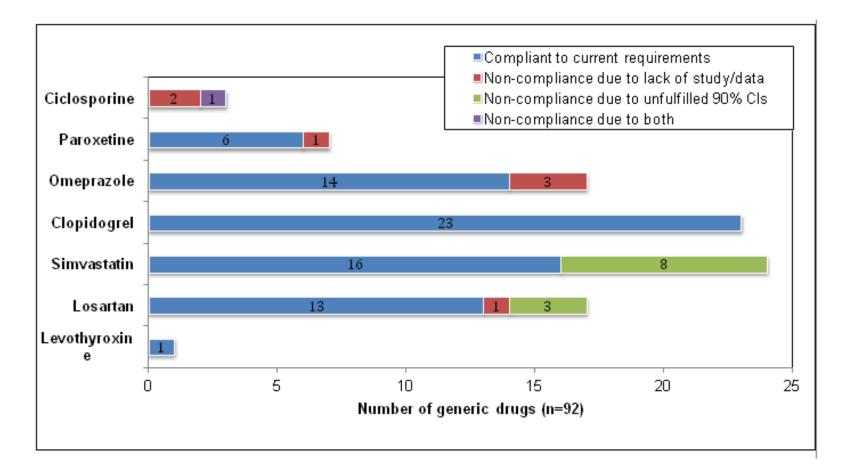
Maastricht University

- Mrs. Angela Colbers (Radboud University Nijmegen Medical Centre)
- Dr. Christine Gispen-de Wied (Medicines Evaluation Board)
- Prof. Dr. Hubert G.M. Leufkens (Medicines Evaluation Board)
- Peter Jongen (Medicines Evaluation Board)
- Amr Makady (National Health Care Institute)
- Dr. Marc Maliepaard (Medicines Evaluation Board)
- Prof. Dr. Cees Neef (Medicines Evaluation Board, Maastricht University Medical Center)
- Dr. Steven Teerenstra (Medicines Evaluation Board)
- Dr. Floris Vanmolkot (Maastricht University Medical Center)
- Emily Zhang (University Utrecht, Utrecht)

Box 1. EMA guidelines and PKWP Questions & Answers documents for bioequivalence studies for immediate-release oral dosage form medicines investigated.

Release date	BE guidelines and Q&A documents*	Index [†]
July 26, 2001	Note for Guidance on the Investigation of Bioavailability and	NfG 2001
	Bioequivalence	
	(Doc Ref: CPMP/EWP/QWP/1401/98, not available online)	
July 27, 2006	Questions & Answers on the bioavailability and bioequivalence	Q&A 2006
	guideline	
	(Doc Ref: EMEA/CHMP/EWP/40326/2006, not available online)	
January 22,	Question & Answers: Positions on Specific Questions Addressed to the	Q&A 2009
2009	EWP Therapeutic Subgroup on Pharmacokinetics	
	(Doc Ref: EMEA/618604/2008, not available online)	
January 20,	Guideline on the Investigation of Bioequivalence	G BE 2010
2010	(Doc Ref: CPMP/EMP/QWP/1401/98 Rev. 1/Corr**,	
	http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guidelin	
	e/2010/01/WC500070039.pdf)	
July 22, 2010	Question & Answers: Positions on Specific Questions Addressed to the	Q&A 2010
	EWP Therapeutic Subgroup on Pharmacokinetics	
	(Doc Ref: EMEA/618604/2008 Rev. 2. not available online)	

M E B **Table 1.** Specific requirements in the EMA guidelines for demonstration of bioequivalence for the generic drugs of selected medicines.


вG

С

Guidance	NfG 2001	Q&A 2006	Q&A 2009	G BE 2010*	Q&A 2010*
Medicines					
Ciclosporine	1. Single dose;	3. Narrowed		1. Single dose;	
(micro-	2. Fasting;	acceptance		2. Fasting & fed;	
emulsion)	3. Narrowed	range for AUC		3. Narrowed	
	acceptance range for	and C_{max} as an		acceptance range	
	AUC and C _{max} as an	option		for AUC and C_{max}	
	option.			(90-111%)	
Paroxetine	1. Single dose or		1. Single dose &	1. Single dose	
	multiple-dose		multiple-dose		
Omeprazole	1. Single dose(fasting		1. Single dose	1. Single dose	1. Single dose
(ER)	& fed) & multiple-dose		(fasting & fed) &	(fasting & fed)	(fasting & fed)
			multiple-dose		
Clopidogrel	1. Parent compound or				1. Parent
	metabolite;				compound
Simvastatin	1. Parent compound		1. Parent	1. Parent	
	(Cmax and/or AUC) &		compound &	compound	
	metabolites (AUC)		metabolites		
Losartan	1. Parent compound			1. Parent	1. Parent
	(Cmax and/or AUC) &			compound	compound
	metabolites (AUC)				
Levothyroxine				1. Baseline	
				correction for drug	
			86	exposure levels	

CBG ME^B

Figure 1. Illustration of evaluation outcome of registered generic drugs for test medicines (n=92).

